OPTIMISING PRECAST BRIDGE GIRDERS FOR SUSTAINABILITY WITH THE USE OF HIGH PERFORMANCE CONCRETE

Doug Jenkins (1), Leigh McCarthy(2), Daksh Baweja(2)

- (1) Interactive Design Services, Australia
- (2 The University of Technology, Sydney, Australia

Abstract

The standard Super-T bridge girders used in Australia were developed to provide optimum performance at a time when the maximum concrete grade covered by the bridge design code was 50 MPa. This paper examines the opportunities for improved sustainability through the use of high performance concrete, considering the use of existing standard sections, modified sections optimised for higher strength grades, and the use of techniques such as hybrid pretensioned and post-tensioned girders, and precast girders used in continuous structures. These alternatives are compared for impact on CO₂ emissions within the context of current Australian precast and bridge construction practice. In addition, the designs of the sections are reviewed based on a series of alternative concrete mix designs covering a reference Portland cement concrete mix and a series of concretes incorporating a range of supplementary cementitious materials included at different levels of cement replacement to determine efficiencies in design and impacts on the embodied energy required to manufacture the elements.

1 INTRODUCTION

The standard precast "Super-T" bridge girders used in Australia have proved to be very popular, offering both an efficient design solution, and rapid construction. At the time of their introduction the maximum concrete grade covered by The Australian Bridge Design Code [1] was 50 MPa [2]. Since that time the maximum concrete grade for use in bridges has increased to 65 MPa in AS 5100 [3], and the latest Australian Standard Concrete Structures Code, AS 3600 [4], released late in 2009, covers concrete strengths up to 100 MPa. Use of these higher strength concretes offers potential for reduction in quantities of concrete and/or steel, offset by higher cement content, but the current range of standard girders are not necessarily optimal for use with higher strength concrete, and there is little data available on CO₂ emissions associated with different alternatives.

Super-T Bridge Girders were introduced in Victoria in 1993, and were quickly adopted by the other Australian States [2]. For the purposes of this study, open topped girders of type T3, T4 and T5 were used as standard sections, and modified type T2 and T3 were used for optimised designs. The Standard Type T5 Super-T open topped section is shown in Figure 1. Table 1 shows overall depths and bottom flange depths for standard sections T3 to T5 and the modified sections used in conjunction with post-tensioning and/or continuous construction, sections T3A, T3B and T2A.

In this paper the design of a typical two span freeway over-bridge is examined, comparing standard strength concrete and girders with higher strength grades and girders optimised for use with high performance concrete, post-tensioning, and continuous structures. These alternatives are examined for their effect on life-cycle CO₂ emissions.

2. DETAILS OF STUDY

This study examines the effect of the use different high performance concrete mixes on the life-cycle CO_2 emissions of a typical 2 span freeway overbridge. The reason for using the term performance instead of strength relates to the mechanical, serviceability and durability requirements of the concrete necessary for efficient design and manufacture of the structural elements. Key design features of the section are as follows:

- Two span freeway over-bridge
- Total length; abutment to abutment 61 m (2 x 28.5 m span + 2.5 m link + 1.5 m ends)
- Carriageway width 11.0 m; Footway / verge widths 0.75 m both sides
- 5 or 6 open topped Super-T girders
- In-situ top slab of 160 mm depth.
- SM 1600 Loading
- Typical Sydney shrinkage and creep parameters
- Exposure class B1

Alternative concrete mixes selected for this study covered the following:

- A. Reference case: 50 MPa characteristic compressive strength concrete made using Portland cement without supplementary cementitious materials (SCM's), defined in Australian Standard AS1379 (Specification and Supply of Concrete) [6], AS3972 (General Purpose and Blended Cement) [7], and AS3582 Parts 1 [8], 2 [9] and 3 [10] (Supplementary Cementitious Materials for Use with Portland and Blended Cements).
- B. Typical current high strength concrete; characteristic compressive strength = 65 MPa.
- C. High strength concrete having a characteristic compressive strength of 80 MPa
- D. Very high strength concrete having a characteristic compressive strength of 100 MPa
- E. High SCM concrete having a characteristic compressive strength of 45 MPa.

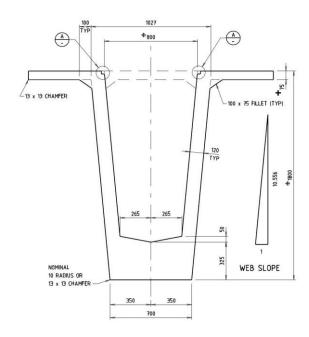


Figure 1: Type 5 Super-T Girder

Table 1: Super-T Girder Dimensions

Type	O/A Depth,	Bottom Flange, mm		
	mm	Base Width	Depth	
Т3	1200	814	260	
T4	1500	757	260	
T5	1800	700	325	
Modified:				
T2A	1000	852	150	
T3A	1200	814	200	
T3B	1200	814	150	

Details of the five mixes and design compressive strengths are shown in Table 2. The emission data for the component materials used in the analyses are taken from earlier published work [11], and are given in Table 3. Emission calculations are shown in Table 4. Calculations took the quantity of each component material and obtained a total emission quantity in the mix by multiplying by the corresponding emission factor given in Table 3 [11].

Table 2: Mix Design Details

Concrete Type	Concrete Property	Unit	Standard- Spec.	Mix A 50 MPa Control	Mix B 65 MPa HPC Current	Mix C 80 MPa HPC High Str.	Mix D 100 MPa HPC Very High Str.	Mix E 45 MPa HPC High SCM
	Total Binder	kg/m³		550	490	640	680	440
	Portland Cement	kg/m³	AS3972	550	350	500	540	245
	Fly Ash	kg/m³	AS3582.1		70	80	60	85
Estimated	GGBFS	kg/m³	AS3582.2		70			110
Concrete Mix Design (Nominal)	Amorphous Silica	kg/m³	AS3582.3			60	80	
	Coarse Aggregate	kg/m³	AS2758.1	1120	1050	1050	1000	1100
	Sand	kg/m³	AS2758.1	590	675	630	650	670
	Water	kg/m³	AS1379	180	180	180	180	180
	Water:Binder			0.33	0.37	0.28	0.26	0.41
Concrete Mechanical Properties	Typical Compressive Strength at 28 Days (fcm)	MPa	AS1012.9	60	70	90	110	50
	Transfer Strength	MPa		35	35	40	40	25
	Drying Shrinkage	Microstrain	AS1012.13	700	600	550	550	650

Table 3: Concrete Component Emission Factors (11)

Concrete Component	Emission Factor	Unit	
GP Cement	0.82	t CO ₂ -e/tonne	
Fly Ash	0.027	t CO ₂ -e/tonne	
GGBFS	0.143	t CO ₂ -e/tonne	
Amorphous Silica	0.027	t CO ₂ -e/tonne	
Coarse Aggregates	0.036	t CO ₂ -e/tonne	
Fine Aggregates	0.014	t CO ₂ -e/tonne	
Concrete Batching	0.003	t CO ₂ -e/m ³	
Concrete Transport	0.009	t CO ₂ -e/m ³	

Table 4: Mix Emission Details (per cubic metre of concrete)

Concrete Component	Mix A 50 MPa Control	Mix B 65 MPa Current	Mix C 80 MPa High Str.	Mix D 100 MPa V. High Str.	Mix E 45 MPa High SCM
Portland Cement	0.45	0.29	0.41	0.44	0.20
Flyash	0.00	0.00	0.00	0.00	0.00
GGBFS	0.00	0.01	0.00	0.00	0.02
Amorphous Silica	0.00	0.00	0.00	0.00	0.00
Coarse Aggregate	0.04	0.04	0.04	0.04	0.04
Sand	0.01	0.01	0.01	0.01	0.01
Totals tCO ₂ -e/m ³	0.51	0.36	0.47	0.50	0.28
% due to Portland Cement	88%	80%	87%	88%	72%
Portland Cement Reduction (to Mix A)	0%	36%	9%	2%	55%

Note: As an example, for the Mix A Portland cement component, the emission derived is $550 \times 0.82 / 1000 \text{ tCO}_2$ per cubic metre of concrete

3.3 Design Options

For each mix design 3 alternative structural configurations were considered:

- Type 1 Fully Pre-tensioned Design: Typical current practice; Standard Super-T girders, fully pre-tensioned. Simply supported spans with in-situ top slab and link slab.
- Type 2 Post-tensioned Design: Super-T optimised for use with High Strength Concrete. Pre-tensioned for transport and construction loads with additional post-tensioning for live loads and long term effects. Simply supported spans with in-situ top slab and link slab.
- Type 3 Post-tensioned Continuous Design: As 2, but with full structural continuity over the central support.

4. ANALYSIS AND DESIGN PROCEDURES

4.1 Bridge Deck Analysis

The structures were analysed with the finite element package Strand7. The precast girders were modelled with beam elements, located on the precast section centroid, with the in-situ top slab modelled with plate-shell elements, connected to the beams with rigid links. Results of the structural analysis are shown in Table 5.

5. BRIDGE DECK SECTIONS

Six type four girders were required for the base case standard mix (Mix A), and the standard current high strength mix (Mix B). The high SCM mix (Mix E), with a lower strength at transfer, required six Type 5 girders. The higher strength mixes (Mix C and Mix D) allowed the number of girders to be reduced to five Type 4 girders.

The level of prestress was controlled by the standard bottom flange depth, so increasing the concrete strength from 80 to 100 MPa did not allow any further reduction in girder numbers or type. Use of post-tensioning allowed higher levels of total prestress and reduced prestress losses. This allowed the use of shallower girders and reduced depth of bottom slab.

Providing structural continuity over the central pier allowed a further reduction in the bottom flange depth and/or girder type, except for the Type D mix. Total concrete, reinforcement and prestressing quantities and total CO₂ emissions are summarised in Table 6. Emissions for the in-situ concrete were based on the Type A mix for Deck type 1A, and the lesser of Type B mix or the girder mix for all other deck types.

6. RESOURCE AND EMISSIONS ANALYSIS RESULTS

All options studied provided significant emissions savings compared with the Base Case (Mix Type A, Deck Type 1), with the greatest savings being provided by the Type E (High SCM mix). Savings were in the range of 15% to 19% for the fully pre-tensioned deck, increasing to

24% to 32% for the post-tensioned deck. A further 3% saving resulted from providing structural continuity at the pier.

Table 5: Structural Analysis Output Summary

Deck/	Composite ULS Design Actions						
Mix		Mid-Span		Link/Continuity Slab			
Type	Moment	Axial load	Shear	Moment	Axial load	Shear	
	kNm	kN	kN	kNm	kN	kN	
1-A/B	8,930	-1,339	1,355	45	651	292	
1-C	10,080	-825	1,481	99	-1,080	353	
1-D	10,080	-825	1,481	99	-1,080	353	
1-E	9,459	-693	1,371	40	-569	263	
2-A/B	10,148	-737	1,573	10	-797	39	
2-C	10,080	-737	1,573	10	-797	39	
2-D	10,125	-885	1,427	10	-1,271	39	
2-E	10,148	-737	1,573	10	-797	39	
3-A/B	6,730	-580	1,854	4,874	-536	2,483	
3-C	6,399	494	1,847	4,878	-529	2,499	
3-D	6,331	636	1,847	4,943	-1,532	3,217	
3-E	6,730	6,730 -580 1,854		4,874	-536	2,483	

Table 6: Summary of Quantities and Emissions

Deck /	Super-T	Girders	Prestress; No. 15.2		Total Quantities		Total Emmissions		
Mix			mm dia. Strands		In-situ	Precast	Reo.		
Туре	Type	Num.	Pretens	Posttens	m ³		t	t CO2-e	%Type 1A
1A	T4	6	40	0	147	224	65.06	376.9	100.0%
1-B	T4	6	40	0	147	224	65.06	320.1	84.9%
1-C	T4	5	42	0	147	186	59.58	312.3	82.8%
1-D	T4	5	46	0	147	186	58.62	315.3	83.6%
1-E	T5	6	28	0	151	243	67.26	304.2	80.7%
2-B	T3A	5	22	30	142	153	58.43	274.1	72.7%
2-C	T3B	5	20	30	142	146	57.76	286.1	75.9%
2-D	T2B	5	24	34	139	133	58.98	286.6	76.0%
2-E	T3	5	22	30	142	170	58.43	255.6	67.8%
3-B	T3B	5	22	10	159	146	54.25	265.5	70.4%
3-C	T2B	5	24	14	154	133	54.42	274.5	72.8%
3-D	T2B	5	24	14	154	133	53.15	275.0	73.0%
3-E	T3B	5	22	10	159	146	54.25	241.6	64.1%

Examples:

Deck Type 3-E, derived emission = (159 + 146)m³ x 0.280 + 54.25t x 2.88 = 241.6 tCO₂ Deck Type 1-C, derived emission = 147 x 0.358 + 186 x 0.472 + 59.58 x 2.88 = 312.3 tCO₂

7. CONCLUSIONS

The following conclusions can be drawn from this study:

- The use of SCM's allowed significant reductions in CO₂ emissions for all the concretes studied, when compared with the standard "reference case" concrete.
- The greatest reduction in emissions was found with the high SCM concrete, but this was associated with a reduced compressive strength at transfer, and increased curing period, which would increase the cost of precast operations.
- Emissions from the 80 MPa and 100 MPa concretes were equal to or only slightly higher than the 65 MPa concrete, and also allowed the use of a reduced depth of girder, which would often allow significant reductions in emissions from associated works.
- The use of precast post-tensioned girders allowed significantly higher levels of prestress, with a resulting reduction in concrete volumes and total emissions.
- Provision of structural continuity over the central support allowed an additional small saving in total emissions.
- The overall reduction of CO₂ emissions was not a simple function of the reduction of Portland cement in the concrete, but was also based on how the material properties of the concretes used influenced the structural efficiency of the design.

REFERENCES

- [1] The Australian Bridge Design Code, (Austroads, Sydney, 1992)
- [2] Merretz, W., 'Towards National Standardisation of Super-T Bridge Girders', Austroads Bridge Conference, Sydney, 1997, (Austroads, Sydney, 1997).
- [3] Australian Standard 5100, Bridge Design, (SAI Global, Sydney, 2004)
- [4] Australian Standard 3600, Concrete Structures, (SAI Global, Sydney, 2009)
- [5] Jenkins, D., "High Performance Concrete in Bridge Decks, Austroads Bridge Conference, Melbourne, 2005, (Austroads, Sydney, 2005).
- [6] Standards Australia, Australian Standard AS1379, "Specification and Supply of Concrete", ISBN 0 7337 1468 4, (SAI Global, Sydney, 2007)
- [7] Standards Australia, Australian Standard AS3972, "General Purpose and Blended Cements", ISBN 978 0 7337 9698 2, (SAI Global, Sydney, 2010)
- [8] Standards Australia, Australian Standard AS3582.1, "Supplementary Cementitious Materials for Use With Portland and Blended Cement Part 1: Fly Ash", ISBN 0 7337 1688 1, (SAI Global, Sydney, 1998)
- [9] Standards Australia, Australian Standard AS3582.2, "Supplementary Cementitious Materials for Use With Portland and Blended Cement Part 2: Slag-Ground Granulated Iron Blast-Furnace", ISBN 0733740545, (SAI Global, Sydney, 2001)
- [10] Standards Australia, Australian Standard AS3582.3, "Supplementary Cementitious Materials for Use With Portland and Blended Cement Part 3: Amorphous Silica", ISBN 0 7337 4929 1, (SAI Global, Sydney, 2002)
- [11] Flower, D., Sanjayan, J. and Baweja, D., "Environmental Impacts of Concrete Production and Construction", Proceedings, Concrete Institute of Australia Biennial Conference, Concrete 2005, Melbourne, Australia, October (2005)